

INDIAN SCHOOL SALALAH

FIRST TERM EXAMINATION – SEPTEMBER 2025

Class: IX MATHEMATICS (041) Date: 28/09/2025

Time: 3 hours Maximum Marks: 80

General Instructions:

- a) This Question Paper has 5 Sections A, B, C, D and E.
- b) Section A has 20 MCQs carrying 1 mark each
- c) Section B has 5 questions carrying 02 marks each.
- d) Section C has 6 questions carrying 03 marks each.
- e) Section D has 4 questions carrying 05 marks each.
- f) Section E has 3 case-based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- g) All Questions are compulsory. However, an internal choice of 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks have been provided. An internal choice has been provided in the 2marks questions of Section E
- h) Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

NO	SECTION A	MARKS
1	The product of two irrational numbers	1
	(a) is always irrational (b) is always rational	
	(c) is always zero (d) may be rational or irrat	tional
2	Which are the zeros of the polynomial $(x - 1) (x + 2)$?	1
	(a) $(1,-2)$ (b) $(-1,2)$ (c) $(-1,-2)$ (d) $(1,2)$	
3	The equation of the line representing $x - axis$ is	1
	(a) $x = 0$ (b) $x + y = 0$ (c) $y = 0$ (d) none of the	ese
4	Euclid stated that a straight line may be drawn from any one point to any	other 1
	point in the form of a	
	(a) theorem (b) postulate (c) axiom (d) lemma	
5	If the ratio between two complimentary angles is 2:3, then the angles are	1
	(a) 144^0 , 216^0 (b) 120^0 , 240^0 (c) 36^0 , 54^0 (d) 30^0	$0,60^{0}$

6	A $(-4, 3)$ be a point on the graph. Draw AL \perp x – axis. The coordinates of point	1
	L are	
	(a) (0,-4) (b) (3,0) (c) (-4,0) (d) (0,-3)	
7	If $y^{\frac{1}{3}} = (343)^{\frac{1}{9}}$ then the value of y is	1
	(a) 7 (b) 49 (c) 2 (d) 3	
8	x + 1 is a factor of the polynomial	1
	(a) $x^3 + x^2 - x + 1$ (b) $x^3 + x^2 + x + 1$	
	(c) $x^4 + x^3 + x^2 + 1$ (d) $x^4 + 3x^3 + 3x^2 + x + 1$	
9	The point at which the two coordinate axes meet is called the	1
	(a) abscissa (b) ordinate (c) origin (d) quadrant	
10	A point C is called the mid point of a line segment AB, if	1
	(a) $AC + CB = AB$ (b) $AC = BC$	
	(c) C is a point on AB such that AC = CB (d) All of these	
11	Which of the following is not a linear equation in two variables?	1
	(a) $2x(x-1) = 2x(x+1) - 3y$ (b) $3x - 5y = 7$	
	(c) $\sqrt{7}x - 3y = 0$ (d) $3x(1 + x) = 3x(2 - x) + 7y$	
12	In the figure, if AB // CD, then ∠EFD is equal to	1
	70° C	
	30°	
	(a) 50^0 (b) 20^0 (c) 30^0 (d) 40^0	
13	The three undefined terms in Mathematics are	1
13	(a) Point, Line and Line segment (b) Point, Plane and Angle	1
1.4	(c) Point, Line and Plane (d) None of these	1
14	If $\sqrt{2} = 1.4142$, then $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equal to	1
	(a) 2.4142 (b) 0.4142 (c) 8282 (d) 0.1718	

15	The value of $p(x) = x^2 - x + 1$ for $p(-1)$ is	1
	(a) 3 (b) -1 (c) 1 (d) none of these	
16	If x coordinate of a point is zero, then this point will always lie	1
	(a) in IV quadrant (b) on y - axis	
	(c) on x – axis (d) in III quadrant	
17	The solution of the equation $x - 2y = 4$ is	1
	(a) (0,2) (b) (2,0) (c) (0,4) (d) (4,0)	
18	In the figure, if AB // CD, then value of x is	1
	$ \begin{array}{c} A \\ A \end{array} $	
	(a) 45° (b) 20° (c) 30° (d) 60°	
	Question number 19 and 20 are Assertion and Reason based questions carrying	
	1 mark each. Two statements are given, one labelled as Assertion (A) and the	
	other is labelled as Reason (R). Select the correct answer to these questions from	
	the codes (a), (b), (c) and (d) as given below.	
	(a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct	
	explanation of Assertion (A).	
	(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the	
	correct explanation of Assertion (A).	
	(c) Assertion (A) is true, but the Reason (R) is false.	
	(d) Assertion (A) is false, but Reason (R) are true.	
19	Assertion: $3 + \sqrt{2}$ is an irrational number	1
	Reason: Sum of a rational number and an irrational number is always an	
	irrational number.	
20	Assertion: There are infinite number of lines which passes through (2, 14).	1
	Reason: A linear equation in two variables has infinitely many solutions.	

	SECTION B	
21	Express $0.\overline{14}$ in the form of $\frac{a}{b}$, where a and b are any two integers and $a \neq 0$.	2
22	If $a^2 + b^2 + c^2 = 90$ and $ab + bc + ca = 155$, then find the value(s) of $a + b + c$.	2
	OR	
	If $x + \frac{1}{x} = 7$, then find the value of $x^3 + \frac{1}{x^3}$	
23	In the figure given below, m // n and p // q. $\frac{p}{1} = \frac{q}{3}$ If $\angle 1 = 75^{\circ}$, then prove that $\angle 2 = \angle 1 + \frac{1}{3}$ of a right angle.	2
24	 a) Express 2x = 3 as a linear equation in two variables. b) Check whether x = -4, y = 8 is a solution of the equation solution of the equation 3x + 2y = 4 	2
	OR	
	Write any two solutions of the equation $2x - 3(1 - y) = 7$.	
25	Write any two Euclid's axioms.	2
	SECTION C	
26	The perpendicular distance of a point from the x-axis is 7 units and the perpendicular distance from the y-axis is 3 units. Write the coordinates of such a point if it lies in a) First quadrant b) Second quadrant c) Fourth quadrant	3
	OR	
	Write the coordinates of a point	
	a) Whose ordinate is –5 and which lies on y – axis.	
	b) Which lies on x and y axes both.	
	c) Whose abscissa is -3 and which lies on $x - axis$.	

27	If $(2k-1, k+2)$ is a solution of the equation $3x - 5y - 7 = 0$, then find the	3
	value of k.	
28	Simplify: $(2x - 5y)^3 - (2x + 5y)^3$	3
29	In the figure, X and Y are respectively the mid – points of AB and BC	3
	respectively and $AX = CY$.	
	X. B	
	Show that AB = BC. Also state the Euclid's axiom used to prove it.	
	OR	
	In the figure $\angle ABC = \angle ACB$, $\angle 3 = \angle 4$.	
	A	
	B 1 2 C	
	Show that $\angle 1 = \angle 2$. Also state the Euclid's axiom used.	
30	In the figure, PQ \perp PS, PQ // SR. \angle SQR = 28° and \angle QRT = 65° , then find the	3
	values of x, y and z.	
	S Z R S	
31	Represent $\sqrt{7.7}$ on a number line.	3
	SECTION D	
32	Find the values of a and b if $\frac{\sqrt{7}-1}{\sqrt{7}+1} + \frac{\sqrt{7}+2}{\sqrt{7}-2} = a + b \sqrt{7}$	5
	OR	
	If $a = \frac{\sqrt{3}+1}{\sqrt{3}-1}$ and $b = \frac{1}{a}$, then find the value of $a^2 - b^2 + ab$.	

Sameer planned to celebrate his birthday in a small centre. He bought candies to give to children and adults. Sameer gave 3 candies to each child and 2 candies to each adult. He distributed 60 candies in total. Represent the above situation as a linear equation in two variables by taking the number of children as 'x' and the number of adults as 'y'. Express the given equation in the form ax + by + c = 0 and hence find the values of a, b and c. Also find three more solutions for the equation formed. Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if ∠ POR : ∠ ROQ = 5 : 7 in the below figure where lines PQ and RS intersect each other at point O. Prove that "If gure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ∠ROS = ½ (∠QOS - ∠POS).	33	Factorise: $6x^3 + x^2 - 10x + 3$	5
give to children and adults. Sameer gave 3 candies to each child and 2 candies to each adult. He distributed 60 candies in total. Represent the above situation as a linear equation in two variables by taking the number of children as 'x' and the number of adults as 'y'. Express the given equation in the form ax + by + c = 0 and hence find the values of a, b and c. Also find three more solutions for the equation formed. Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if ∠ POR : ∠ ROQ = 5 : 7 in the below figure where lines PQ and RS intersect each other at point O. OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray	34	Sameer planned to celebrate his birthday in a small centre. He bought candies to	5
to each adult. He distributed 60 candies in total. Represent the above situation as a linear equation in two variables by taking the number of children as 'x' and the number of adults as 'y'. Express the given equation in the form $ax + by + c = 0$ and hence find the values of a, b and c. Also find three more solutions for the equation formed. Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if \angle POR: \angle ROQ = 5:7 in the below figure where lines PQ and RS intersect each other at point O. OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
Represent the above situation as a linear equation in two variables by taking the number of children as 'x' and the number of adults as 'y'. Express the given equation in the form ax + by + c = 0 and hence find the values of a, b and c. Also find three more solutions for the equation formed. Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if ∠ POR : ∠ ROQ = 5 : 7 in the below figure where lines PQ and RS intersect each other at point O. Prove that "If two lines intersect each other at point O. Prove that "If two lines intersect each other at point O. In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
number of children as 'x' and the number of adults as 'y'. Express the given equation in the form $ax + by + c = 0$ and hence find the values of a, b and c. Also find three more solutions for the equation formed. Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if \angle POR: \angle ROQ = 5:7 in the below figure where lines PQ and RS intersect each other at point O. POR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
equation in the form $ax + by + c = 0$ and hence find the values of a, b and c. Also find three more solutions for the equation formed. Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if \angle POR: \angle ROQ = 5:7 in the below figure where lines PQ and RS intersect each other at point O. POR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
Also find three more solutions for the equation formed. Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if ∠ POR : ∠ ROQ = 5 : 7 in the below figure where lines PQ and RS intersect each other at point O. P OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
Prove that "If two lines intersect each other, then the vertically opposite angles are equal." Using this theorem, find all the angles if ∠ POR: ∠ ROQ = 5:7 in the below figure where lines PQ and RS intersect each other at point O. P OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
are equal." Using this theorem, find all the angles if \angle POR : \angle ROQ = 5 : 7 in the below figure where lines PQ and RS intersect each other at point O. OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray	35	-	5
the below figure where lines PQ and RS intersect each other at point O. P OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray	33		3
OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray		the below figure where thies PQ and RS intersect each other at point O.	
OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray		P	
OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray		S	
OR In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray			
In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray		R	
In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray		$Q_{\mathcal{J}}$	
		OR	
		In figure, POO is a line, Ray OR is perpendicular to line PO. OS is another ray	
lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$.			
To the second se		lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$.	
xs ↑R → O → O			
→ → → → → → → → → → → → → → → → → → →		\ †R	
→ 		- ×3 ·	
→			
→			
→ Ö Ö		\h	
		4 	
		, , , , , , , , , , , , , , , , , , ,	

	SECTION E	
6	Case Study.1	
	During revision hours, two students Vimal and Sunil were discussing with each	
	other about the topic of rationalising the denominator, exponential laws and	
	properties of irrational numbers and operations on them.	
	Based on the above information answer the questions stated below:	
	a) Find the value of $\left(\sqrt{x^3}\right)^{\frac{2}{3}}$	1
	b) Find the value of $\frac{3^0 + 5^0}{4^0}$	1
		2
	c) (i) If $x = 3 + \sqrt{2}$ then find the value of $\frac{1}{x}$.	
	OR	
	c) (ii) Simplify $3\sqrt{45} - \sqrt{125} + \sqrt{500}$	
7	Case Study.2	
	Four friends were made to stand on the points A, B, C, D in a playground to play	
	a game, If ABCD forms a rectangle as shown in the figure below.	
	Based on the above information answer the following questions	
	Уф	
	6 - 5 -	
	A 4- B	
	2 -	
	-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 X	
	DC	
	-3 - -4 - -5 -	

a)	Find the coordinates of point A	1
b)	In which quadrant does point C lie?	1
, i		2
c)	(i) Find the area of the rectangle ABCD.	
	OR	
c)	(ii) Find the co-ordinates of B and D and then find the value of (ordinate	
	of B) - (abscissa of D).	
38 Case	Study.3	
Satyar	m was playing with torch. He put mirrors at different places and threw	
torch 1	light over them. When he threw light, it got reflected as shown below in	
geome	etrical figure.	
B	G E F C D	
Based	on the above information answer the following questions	
a)	Identify two pairs of line segments which are parallel.	1
b)	Identify any two set of points which are collinear.	1
c)	(i) Find the measure of $\angle ABG$.	2
	OR	
(c)	(ii) What is the measure of reflex angle ∠AGB.	
