Roll No.

INDIAN SCHOOL SALALAH

FIRST TERM EXAMINATION – SEPTEMBER 2025

Class: XI MATHEMATICS (041) Date: 28/09/2025

Time: 3 hours Maximum Marks: 80

General Instructions:

- a) This Question Paper has 5 Sections A, B, C, D and E.
- b) Section A has 20 MCQs carrying 1 mark each
- c) Section B has 5 questions carrying 02 marks each.
- d) Section C has 6 questions carrying 03 marks each.
- e) Section D has 4 questions carrying 05 marks each.
- f) Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts.
- g) All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 3 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E.

NO	SECTION A										
1	If $n(A \cup B) = 18$, $n(A - B) = 5$, $n(B - A) = 3$ then $n(A \cap B)$ is										
	(a) 8 (b) 10 (c) 18 (d) None of these.										
2	If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\}$ then $(A - B) \times (B - C)$										
	(a) $\{(1, 2), (1, 5), (2, 5)\}$ (b) $\{(1, 4)\}$ (c) $\{1, 4\}$ (d) None of these.										
3	The value of tan1° × tan2° × tan3° tan89° is										
	(a) 0 (b) 1 (c) $\frac{1}{2}$ (d) Not defined.										
4	The value of $i + i^{10} + i^{20} + i^{30}$ is										
	(a) i (b) 1 (c)-1+ i (d) 1+ i										
5	Solution set for inequality $5x - 3 < 3x + 1$, $x \in N$ is	1									
	(a) $(-\infty, 2)$ (b) $\{0, 1, 2\}$ (c) $\{1\}$ (d) ϕ .										
6	How many possible two digits numbers can be formed by using the digits 3,5										
	and 7? (If repetition of the digit is allowed).										
	(a) 10 (b) 9 (c) 7 (d) 8										

7	If the 10th term of a G.P. is 9 and 4th term is 4, then what is its 7th term.									
	(a) 6 (b) 14 (c) $\frac{27}{14}$ (d) $\frac{56}{15}$									
8	If A and B are two given sets, then $A \cap (A \cap B)'$ is equal to									
	(a) A (b) B' (c) ϕ (d) A – B.									
9	Domain of the function $f(x) = \frac{x}{x+2}$ is									
	(a) R (b) $R - \{2\}$ (c) $R - \{1\}$ (d) $R - \{-2\}$									
10	Number of terms in the expansion of $\{(2x + y^3)^4\}^7$ is									
	(a) 28 (b) 84 (c) 29 (d) 30									
11	The modulus of $\frac{1+i}{1-i}$	1								
	(a) 1 (b) 4 (c) 2 (d) 3									
12	Solution set for inequality $-8 \le 5x - 3 < 7$ is	1								
	(a) $(-1, 2)$ (b) $[2, 3)$ (c) $[-1, 2)$ (d) $[2, 3]$.									
13	Find the number of words which can be formed from the letters of the word	1								
	MAXIMUM.									
	(a) 4! (b) $3! \times 4!$ (c) $\frac{7!}{3!}$ (d) None of these									
14	If the arithmetic and geometric means of two numbers are 10 and 8 respectively,									
	then one number exceeds the other number by									
	(a) 8 (b) 10 (c) 12 (d) 16.									
15	If $a \in \{-1,1,2,3,4,5\}$ and $b \in \{0,3,6\}$ then find the number of ordered pairs (a,									
	b) such that $a + b = 5$.									
	(a) 3 (b) 5 (c) 6 (d) 8									
16	If $z_1 = a + ib$ and $z_2 = c + id$ are two complex numbers, then the product	1								
	$z_1 z_2$ is defined as									
	(a) $ac + bd$ (b) $ac + i(bd)$									
	(c) $(ac - bd) + i(ad + bc)$ (d) none of these									
17	Number of terms in simplification of $(x + y)^5 + (x - y)^5$ is	1								
	(a) 10 (b) 4 (c) 12 (d) 3									
18	10 students are participating in a competition. In how many different ways can the first, second, and third prizes be awarded? (There are 3 prizes).									
	(a) 720 (b) 60 (c) 30 (d) 120									

19	Assertion: $A = \{a, b\}$ and $B = \{a, b, c\}$ then A is a subset of B.	1								
	Reason: All subsets are finite sets.									
	(a) Both A and R are true and R is the correct explanation of A.									
	(b) Both A and R are true but R is not the correct explanation of A.									
	(c) A is true but R is false.									
	(d) A is false but R is true.									
20	Assertion: $\frac{\cos(\pi+x)\cdot\cos(-x)}{\sin(\pi-x)\cdot\cos\left(\frac{\pi}{2}+x\right)} = \cot^2 x$	1								
	Reason: $\cos (\pi + \theta) = -\cos \theta$ and $\cos (-\theta) = \cos \theta$. Also, $\sin (\pi - \theta) = \sin \theta$ and $\sin (-\theta) = -\sin \theta$.									
	(a) Both A and R are true and R is the correct explanation of A.									
	(b) Both A and R are true but R is not the correct explanation of A.									
	(c) A is true but R is false.									
	(d) A is false but R is true.									
	SECTION B									
21	Find the value of $\cos 510^{\circ} \cos 330^{\circ} + \sin 390^{\circ} \cos 120^{\circ}$. OR	2								
21	If $\sin A = \frac{3}{5}$ and $0 < A < \frac{\pi}{2}$, find $\cos A$, $\sin 2A$.									
22	In how many ways can the letters of the word "PENCIL" be arranged so that I	2								
	is always next to L.									
	OR									
	If ${}^{n}C_{12} = {}^{n}C_{13}$ find ${}^{n}C_{25}$									
23	If a, b, c, d are in G.P. then prove that, $a + b$, $b + c$, $c + d$ are also in G.P.	2								
24	Express $i^{15} + i^{100} - i^{17} + 5i^3$ in the form $(a + ib)$	2								
25	Find domain and range of the function $\frac{ x-4 }{x-4}$	2								
	SECTION C									
	SECTION C									
26	On the Real axis, If $A = [0, 3]$ and $B = [2, 6]$ then find the following	3								
	On the Real axis, If $A = [0, 3]$ and $B = [2, 6]$ then find the following (i) A' (ii) $A \cup B$ (iii) $A \cap B$	-								
26	On the Real axis, If $A = [0, 3]$ and $B = [2, 6]$ then find the following	3								

28	By using binomial theorem show that $9^{n+1} - 8n - 9$ is divisible by $64, n \in \mathbb{N}$.	3
	OR	
	Expand $(1 + x^2)^6$ using binomial theorem.	
29	Find the sum of 'n' terms of the series: 7+77 + 777 + n terms.	3
	OR	
	The product of first three terms of a G.P. is 1000. If 6 is added to its second term	
	and 7 is added to its third term, we get A.P. Find the G.P.	
30	A group consists of 4 girls and 7 boys. In how many ways can a team of 5	3
	members be selected if a team has (i) at least 3 girls (ii) at most 3 girls	
31	Prove that $\tan 13x = \tan 4x + \tan 9x + \tan 4x \tan 9x \tan 13x$.	3
	OR	
	Prove $\frac{\sin(x+y) - 2\sin x + \sin(x-y)}{\cos(x+y) - 2\cos x + \cos(x-y)} = \tan x$	
	$\cos(x+y) - 2\cos x + \cos(x-y)$	
	SECTION D	
32	Expand $(x + y)^6 + (x - y)^6$ using binomial theorem and hence evaluate	5
	$\left(\sqrt{3}+\sqrt{2}\right)^6+\left(\sqrt{3}-\sqrt{2}\right)^6$	
33	(a) If $\frac{(x+i)^2}{2x^2+1} = a + ib$, then prove that $\frac{(x^2+1)^2}{(2x^2+1)^2} = a^2 + b^2$	5
	(b) If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$	
34	How many litres of water will have to be added to 1125 litres of the 45% solution	5
	of acid so that the resulting mixture will contain more than 25% but less than	
	30% acid content?	
	OR	
	(a) While drilling a hole in the earth, it was found that the temperature (T°C) at	
	x km below the surface of the earth was given by $T = 30 + 25(x - 3)$, when	
	$3 \le x \le 15$. Between which depths will the temperature be between 200°C	
	and 300°C?	
	(b) Solve the inequality: $\frac{x}{2} < \frac{5x-2}{3} - \frac{7x-3}{5}$	
35	(a) If f is a real function defined by $f(x) = \frac{x-1}{x+1}$, then prove that	5
	$f(2x) = \frac{3f(x)+1}{f(x)+3}$	

	(b)	Let	R	be	the	relation	on	the	set	N	of	natural	numbers	defined	by
$R = \{(a, b): a + 3b = 12, a, b \in N\}$. Find															

- (i) R (ii) Domain of R
- (iii) Range of R

(a) If
$$f(x) = \begin{cases} 3x - 2, & x < 0 \\ 1, & x = 0 \\ 4x + 1, & x > 0 \end{cases}$$
 then find $f(1), f(-1), f(0), f(2)$.

(b) If
$$f(x) = \frac{1}{2x+1}$$
, $x \neq \frac{-1}{2}$ then show that $f(f(x)) = \frac{2x+1}{2x+3}$, $x \neq \frac{-3}{2}$.

SECTION E

36 Case Study.1

Nitish is playing with a Pinwheel toy which he bought from a village fair. He noticed that the pinwheel toy revolves as fast as he blows it. Consider the Pinwheel toy that makes 360 revolutions per minute.

- (a) Find the number of revolutions made by Pinwheel toy in 120 second.
- 1
- (b) Find the number of revolutions made by Pinwheel toy in 1 sec.
- 1 2
- (c) (i) Find the angle made by Pinwheel toy in 6 revolutions both in degrees and radians.

OR

(c) (ii) Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm (use $\pi = \frac{22}{7}$).

37 Case Study.2

Riya and her 5 friends went for a trip to Shimla. They stayed in a hotel. There were 4 vacant rooms A, B, C and D. Out of these 4 vacant rooms, two rooms A and B were double share rooms and two rooms C and D can contain one person each.

Based on the given information answer the following questions.

(a) Find the number of ways in which room A can be filled.

1

(b) If room A and B are already filled, then find the number of ways in which room C can be filled.

2

(c) (i) If room C and D are already filled, then find the number of ways in which room A and B can be filled.

OR

(c) (ii) If room A is filled with 2 persons, then find the number of ways in which rooms C and D can be filled.

38 Case Study.3

Rahul, being a plant lover, decides to open a nursery and he bought few plants and pots. He wants to place pots in such a way that the number of pots in the first row is 2, in second row is 4 and in the third row is 8 and so on.....

(a) Find the difference in the number of pots placed in 7th row and 5th row.

2

(b) If Rahul wants to place 510 pots in total, then find the total number of rows formed in this arrangement.

2