Roll No.					
----------	--	--	--	--	--

INDIAN SCHOOL SALALAH FIRST TERM EXAMINATION – SEPTEMBER 2025

Class: X MATHEMATICS (041) Date:22/09/2025

Time: 3 hours Maximum Marks: 80

General Instructions:

- a) This Question Paper has 5 Sections A, B, C, D and E.
- b) Section A has 20 MCQs carrying 1 mark each
- c) Section B has 5 questions carrying 02 marks each.
- d) Section C has 6 questions carrying 03 marks each.
- e) Section D has 4 questions carrying 05 marks each.
- f) Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- g) All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- h) Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A							
1	The largest number that divides 70 and 125, which leaves the remainders 5 and 8, is:							
	a) 65	b) 15	c) 13	d) 25				
2	LCM of the g	given number 'x' and '	y' where y is a multip	ple of 'x' is given by	1			
	a) <i>x</i>	b) y	c) xy	d) $\frac{x}{y}$				
3	If the zeroes o	of the quadratic polynomials	omial $ax^2 + bx + c$, c	\neq 0 are equal, then	1			
	a) c and b ha	ave opposite signs	b) c and a hav	ve opposite signs				
	c) c and b have	ve same signs	d) c and a hav	ve same signs				
4	If one zero or	f the quadratic polyno	mials $x^2 + 3x + k$	is 2, then the value of	1			
	k is							
	a) 10	b) -10	c) 5	d) -5				

5	Which out of the following type of straight lines will be represented by the								
	system of equations $3x + 4y = 5$ and $6x + 8y = 7$								
	a) Parallel b) Intersecting								
	c) Coincident d) perpendicular to each other								
6	If $x = 1$ and $y = 2$ is a solution of the pair of linear equations	1							
	2x - 3y + a = 0 and $2x + 3y - b = 0$, then								
	a) $a = 2 b$ b) $2a = b$								
	c) $a + 2b = 0$ d) $2a + b = 0$								
7	If the pair of equations $3x - y + 8 = 0$ and $6x - ry + 16 = 0$ represent	1							
	coincident lines, then the value of r is								
	a) $\frac{-1}{2}$ b) $\frac{1}{2}$ c) -2 d) 2								
8	The roots of the quadratic equation $3x^2 - 6x + 3 = 0$ are	1							
	a) Real and distinct b) Not real								
	c) Real and equal d) None of theses								
9	The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is	1							
	13 cm, the other two sides of the triangle are equal to:								
	a) Base = 10cm and Altitude = 5cm b) Base = 12cm and Altitude = 5cm								
	c) Base = 14cm and Altitude = 10cm d) Base = 12cm and Altitude = 10cm								
10	The sum of all two-digit odd numbers is	1							
	a) 2575 b) 2475 c) 2524 d) 2425								
11	Three numbers in A.P have the sum 30. What is its middle term?	1							
	a) 4 b) 10 c)16 d)8								
12	If p, q, r and s are in A.P. then $r - q$ is	1							
	a) s - p b) s - q								
	c) s – r d) none of these								
13	The distance of the point $(-1, 7)$ from the x-axis is	1							
	a) -1 b) 7 c) 6 d) $\sqrt{50}$								
14	The points $(-4,0)$, $(4,0)$ and $(0,3)$ are the vertices of a	1							
	a) right triangle b) isosceles triangle								
	c) equilateral triangle d) scalene triangle								

15	In $\triangle ABC$, $AB = 6$ cm and $DE \parallel BC$ such that $AE = \frac{1}{4}AC$ then the length of AD	1
	is	
	a) 2 cm b) 1.2 cm c) 1.5 cm d) 4 cm	
16	$\Delta ABC \sim \Delta DEF$. If $AB = 4$ cm, $BC = 3.5$ cm, $CA = 2.5$ cm and $DF = 7.5$ cm,	1
	then the perimeter of ΔDEF is	
	a)10 cm b) 14 cm c) 30 cm d) 25 cm	
17	If the arithmetic mean of x , $x + 3$, $x + 6$, $x + 9$ and $x + 12$ is 10, then $x = ?$	1
	a)1 b)2 c)6 d) 4	
18	If a coin is tossed 3 times, what is the probability of getting 2 heads and 1 tail?	1
	a) $\frac{1}{8}$ b) $\frac{3}{8}$ c) $\frac{1}{2}$ d) $\frac{5}{8}$	
	8 8 2	
	In question numbers 19 and 20, a statement of Assertion (A) is followed by	
	a statement of Reason (R). Choose the correct option.	
19	Assertion: If a box contains 5 white, 2 red and 4 black marbles, then the	1
	probability of not drawing a white marble from the box is $\frac{5}{11}$.	
	Reason: $P(\overline{E}) = 1 - P(E)$, where E is any event.	
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct	
	explanation of Assertion (A).	
	b) Both assertion (A) and reason (R) are true and reason (R) is not the correct	
	explanation of Assertion (A).	
	c) Assertion (A) is true but reason(R) is false.	
	d) Assertion (A) is false but reason(R) is true.	
20	Assertion: If the value of mode and mean is 60 and 66 respectively, then	1
	the value of median is 64.	
	Reason: Median = $(mode + 2 mean)/2$	
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct	
	explanation of Assertion (A).	
	b) Both assertion (A) and reason (R) are true and reason (R) is not the	
	correct explanation of Assertion (A).	
	c) Assertion (A) is true but reason(R) is false.	
	d) Assertion (A) is false but reason(R) is true.	

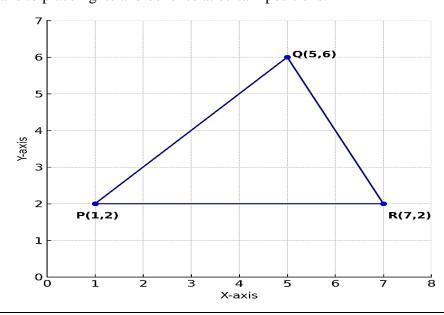
	SECTION B	
21	Prithvi has 40 cm long red ribbon and 84 cm long blue ribbon. He cuts each	2
	ribbon into piece such that all pieces are of equal length. What is the length of	
	each piece? Also find the number of pieces.	
	OR	
	The LCM of two numbers is 9 times their HCF. The sum of LCM and HCF	
	is 500. Find the HCF of two numbers.	
22	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value	2
	of $\frac{1}{\alpha} - \frac{1}{\beta}$.	
23	Solve for $x: \sqrt{3} \ x^2 - 2\sqrt{2} \ x - 2\sqrt{3} = 0$	2
24	Find the ratio in which y-axis divides the line segment joining the points	2
	A(5,-6) and $B(-1,-4)$.	
	OR	
	A line intersects the y-axis and x-axis at the points P and Q respectively.	
	If (2, -5) is the midpoint of PQ; then find the coordinates of P and Q.	
25	Two dice are thrown at the same time. Find the probability of getting	2
	a) Same number on both dice.	
	b) The sum of two numbers appearing on both dice is 8.	
	SECTION C	
26	Given $\sqrt{3}$ is irrational, prove that $5 + 2\sqrt{3}$ is irrational.	3
27	A fraction becomes $\frac{9}{11}$, if 2 is added to both the numerator and the denominator.	3
	If 3 is added to both the numerator and the denominator, it becomes $\frac{5}{6}$.	
	Represent the above situation algebraically and hence find the fraction.	
	OR	
	Solve the following pair of linear equations for <i>x</i> and <i>y</i> :	
	141x + 93y = 189; 93x + 141y = 45	
28	How many terms of the AP: 24, 21, 18, must be taken so that their sum	3
	is 78?	
	OR	

	If the sum of the first n terms of an AP is $4n - n^2$, what is the sum of the first										
	two terms. Als	so find the	e second	l term ar	nd nth terr	n.					
29	Prove that "If a line is drawn parallel to one side of a triangle and intersects the										
	other two sides, then it divides those two sides in the same ratio."										
30	Compute the mode for the following distribution.										
	Class	0-4	4-8	8 -12	12 -16	16 -20	20 - 24	24 - 28			
	Frequency	5	7	9	17	12	10	6			
31	One card is d	rawn fron	n a well	shuffled	deck of 5	2 cards. F	ind the pr	obability of	3		
	getting										
	a) a king	of red co	lour								
	b) a face	e card.									
	c) the qu	een of dia	mond.								
			S	ECTIO	N D						
32	Draw the gra	ph of 2y	= 4x	- 6; 2 <i>x</i>	= y + 3	3 and det	ermine w	hether this	5		
	system of linear equations has a unique solution or not.										
33	A two-digit nu	ımber is s	uch that	the prod	duct of its	digits is	12. When	36 is added	5		
	to this number	r, the digit	s interc	hange th	eir places	s. Find the	number.				
					R						
	A train covers				-		-				
	increased by			urney w	ould hav	e taken 1	hour les	s. Find the			
24	original speed			1, 1	1	100 1	D. D.	.1			
34	In the given fi	_		_			AB. Prove	that	5		
	$\Delta ABC \sim \Delta AD$	e and ner	ice iina	the leng	uns of Af	and DE.	Α				
	E DE S										
				O	R						
	A girl of heigh							-			
	of 1.2 m/s. If t	-	s 3.6 m	above th	ne ground	, find the	length of	her shadow			
	after 4 second	s.									

	Classes	0-10	10-20	20-30	30-40	40-50	50-60	Total			
			10-20			40-30					
	Frequency	10	х	25	30	У	10	100			
				SECTIO	ON E						
6	Case study	⁷ 1:									
	The school auditorium was to be constructed to accommodate at least 1500										
	people. The o	chairs are	to be plac	ced in con	centric ci	rcular arra	angement	in such a			
	way that each	succeed	ing row h	as 10 seat	s more th	an the pre	vious one).			
			-			1		- 1 T			
	4			-	-		-	1			
				F							
					1						
	A. P.	ati di	/ 11/	-			1	Market Comments			
		1 1	W.			-					
	•		Man and	100		CHA					
	Based on abo	ve inform	nation ans	swer the fo	ollowing o	questions.					
	a) If the first circular row has 30 seats, how many seats will be there in the										
	10 th row?										
	b) If the	re were 1	7 rows in	the audito	orium, hov	v many se	eats will b	e there in	1		
	the m	iddle row	?								
	c) For 1:	500 seats	in the aud	ditorium, l	how many	rows nee	ed to be th	nere?	2		
				Ol	R						
	c) If 150	00 seats	are to be	arranged i	n the aud	itorium, h	ow many	seats are			
	still lef	ft to be pu	at after the	e 10 th row	?						
	Still let Case Stud		it after the	e 10 th row	?						
		y 2:				ball. Ever	າ though <i>ຄ</i>	an athlete			
	Case Stud	y 2:	are playe	ed with a	spherical						
	Case Stud Basketball a	y 2: nd soccer ball in bo	are playe	ed with a	spherical	uses his	hands and	l a soccer			

traced) of soccer ball and basketball are in the form of parabola, which can be represented using a quadratic polynomial.

Based on above information answer the following questions.


- a) Write the general form of a quadratic polynomial.
- b) If the path of a soccer ball is represented by $x^2 5x + 6$, find its zeroes.
- c) The path of a basketball is represented by $x^2-7x+12$. Verify the relationship between the zeroes and the coefficients of this quadratic polynomial.

OR

c) If a ball follows the path x^2+4x+3 , find the zeroes and hence find their sum and product.

38 Case study 3:

The boundary of a triangular portion of a school playground is represented on the coordinate plane with vertices at P(1, 2), Q(5, 6), and R(7, 2). The school plans to place lights and benches at certain positions.

1

1

2

Bas	ed on above information answer the following questions.	
a)	Find the distance between points P(1, 2) and Q(5, 6).	1
b)	Find the coordinates of the midpoint of side QR.	1
c)	Find the coordinates of the point which divides the line segment PR in	2
	the ratio 1:3.	
	OR	
c)	If a vertical pole is to be erected at the midpoint of PR, what will be the	
	coordinates of its base? Also, explain why the midpoint is the most suitable	
	location for balance in this case.	
