

INDIAN SCHOOL SALALAH

FIRST TERM EXAMINATION – SEPTEMBER 2025

Class: X MATHEMATICS (041) Date: 22/09/2025

Time: 3 hours Maximum Marks: 80

General Instructions:

- a) This Question Paper has 5 Sections A, B, C, D and E.
- b) Section A has 20 MCQs carrying 1 mark each
- c) Section B has 5 questions carrying 02 marks each.
- d) Section C has 6 questions carrying 03 marks each.
- e) Section D has 4 questions carrying 05 marks each.
- f) Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- g) All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- h) Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

NO	SECTION A		
1	LCM of two numbers 'p' and 'q' where 'q' is a multiple of 'p' is:		
	(a) p (b) q (c) pq (d) 1		
2	If one of the zeroes of the quadratic polynomial $(m-2)x^2 + mx + 2$ is -2 , then the value of m is		
	(a) 3 (b) -1 (c) 0 (d) 1		
3	(a) 3 (b) -1 (c) 0 (d) 1 If α , β are the zeroes of a polynomial $p(x) = x^2 + x - 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is:		
	(a) 0 (b) -1 (c) 1 (d) -2		
4	For what value of k, do the equations $2x - y + 3 = 0$ and $6x - ky + 9 = 0$		
	represent coincident lines?		
	(a) -2 (b) 5 (c) 0 (d) 3		
5	The pair of equations $3x - 5y = 7$ and $-6x + 10y = 7$ have		
	(a) a unique solution (b) infinitely many solutions		
	(c) no solution (d) two solutions		

6	The nature o	f roots of the equation 9	$9x^2 - 6x - 2 = 0$ is		1
	(a) No real r	oots (b) 2 e	qual real roots		
	(c) 2 distinct	real roots (d) Mo	ore than 2 real roots		
7	If one root o	$f x^2 - 7x + 10 = 0 \text{ is } 5, t$	he other root is:		1
	(a) 2	(b) 3	(c) 1	(d) -3	
8	If the 10th to	erm of an AP is twice th	e 5th term, the comme	on difference is equal	1
	to:				
	(a) the first t	erm	(b) twice the first	term	
	(c) half the f	irst term	(d) 5 times the first	st term	
9	The sum of t	the first n terms of an A	P is $2n^2 + 3n$. The 9th	n term is:	1
	(a) 14	(b) 27	(c) 17	(d) 37	
10	A sum of 15	terms of an AP is 345.	If the first term is 5, the	hen the last term is:	1
	(a) 40	(b) 41	(c) 43	(d) 52	
11	The distance	of the point (3,4) from	the origin is:		1
	(a)7	(b) 12	(c) 5	(d) 0	
12	If $\left(\frac{a}{3}, 4\right)$ is	the mid-point of the se	gment joining the poi	nts P(-6,5) and	1
	R(-2,3), th	en the value of 'a' is			
	(a) -12	(b) 5	(c) -17	(d) -8	
13	In the given	figure, ΔB CA is similar	: to	_	1
				E	
			c		
			A	В	
	(a) <i>ΔAED</i>	(b) Δ <i>E</i> DA	(c) Δ <i>ACB</i>	(d) <i>∆A</i> DE	
14	In \triangle ABC, AB = AC and \angle B = 70° . The value of \angle A is:			1	
	(a) 70^0	(b) 50^0	(c) 40^{0}	(d) 35^0	
15		class mark 27 and class			1
10	(a) 29	(b) 30	(c) 35	(d) 28	1
16		of a data is 24 and the m		·	1
	(a) 50	(b) 25	(c) 35	(d) 30	-
		(0) =0	(-, -,	(=) = =	

17	A die is rolled once. The probability of getting a prime number or an odd number		
	is:		
	(a) $2/3$ (b) $\frac{1}{2}$ (c) $1/3$ (d) $5/6$		
18	A card is drawn from a well-shuffled deck. Probability that it is neither a red	1	
	card nor a king:		
	(a) $1/13$ (b) $\frac{1}{2}$ (c) $6/13$ (d) $1/26$		
	In question numbers 19 and 20, a statement of Assertion (A) is followed by		
	a statement of Reason (R). Choose the correct option.		
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct		
	explanation of assertion (A)		
	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct		
	explanation of assertion (A)		
	(c) Assertion (A) is true but reason (R) is false.		
	(d) Assertion (A) is false but reason (R) is true.		
19	Assertion (A): If two numbers are co-prime, their LCM is equal to the product	1	
	of the numbers.		
	Reason (R): Co-prime numbers have no common factor other than 1.		
20	Assertion(A): If the pair of lines are coincident, then we say that pair of lines	1	
	is consistent and it has a unique solution.		
	Reason(R): If the pair of lines are parallel, then the pairs have no solution and		
	is called inconsistent pair of equations.		
	SECTION B		
21	Three bells toll at intervals of 9, 12, 15 minutes respectively. If they start tolling	2	
	together, after what time will they next toll together?		
	OR		
	Check whether 6 ⁿ can end with the digit 0 for any natural number n.		
22	If α and β are the zeroes of the polynomial x^2+6x+9 , then form a polynomial	2	
	whose zeroes are $-\alpha$ and $-\beta$.		
23	For what value of k , are the roots of the quadratic equation $3x^2+2kx+27=0$	2	
	real and equal.		

24	Point A(-1 , y) and B(5 , 7), where AB is the diameter of a circle whose centre			
	is $(2, -3y)$. Find the value of y.			
	OR			
	Find the fourth vertex of parallelogram ABCD whose three vertices are			
	A(-2,3), $B(6,7)$ and $C(8,3)$.			
25	Two dice are thrown at the same time, find the probability of:	2		
	a) Getting a total of 9 or 11			
	b) Not getting the same number on the two dice.			
	SECTION C			
26	Prove that $\sqrt{5}$ is irrational.	3		
27	Solve $2x + 3y = 11$ and $2x - 4y = -24$ and hence find the value of 'm' for	3		
	which $y = mx + 3$.			
	OR			
	For which values of a and b does the following pair of linear equations have an			
	infinite number of solutions?			
	2x + 3y = 7; (a - b)x + (a + b)y = 3a + b - 2			
28	The sum of first n terms of an A.P. is $5n^2 + 3n$. If its mth term is 168, find the			
	value of m. Also find the 20th term of this A.P.			
	OR			
	Find the sum of all natural numbers between 200 and 400 which are divisible			
	by 7.			
29	Prove that if a line is drawn parallel to one side of a triangle to intersect the other			
	two sides in distinct points, the other two sides are divided in the same ratio.			
30	Find the mode of the following data.			
	Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80			
	Interval			
	Frequency 5 8 7 12 28 20 10 10			

31	A box contains 75 discs which are numbered from 1 to 75. If one disc is drawn	3	
	at random from the box, find the probability that it bears		
	a) a two-digit number.		
	b) a perfect square number.		
	c) a number divisible by 5.		
	SECTION D		
32	Draw the graph of $2x + y = 6$ and $2x - y + 2 = 0$. Shade the region	5	
	bounded by these lines and x-axis. Find the area of the shaded region.		
33	A fast train takes 3 hours less than a slow train for a journey of 600 km. If the		
	speed of the slow train is 10 km/h less than that of the fast train, find the speeds		
	of the two trains.		
	OR		
	Speed of a boat in still water is 15 km/h. It goes 30 km upstream and returns		
	back at the same point in 4 hours 30 minutes. Find the speed of the stream.		
34	Sides AB and AC and median AD of a triangle ABC are respectively		
	proportional to sides PQ and PR and median PM of another triangle PQR. Show		
	that \triangle ABC ~ \triangle PQR.		
	OR		
	In the given fig. PA, QB and RC each is perpendicular to AC such that $PA = x$,		
	RC = y, QB = z, AB = a and BC = b. Prove that $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$.		
	P R y		
	$A \xrightarrow{a} B \xrightarrow{b} C$		
35	The mean of the following frequency distribution is 62.8 and the sum of all	5	
	frequencies is 50. Compute the missing frequencies f ₁ and f ₂ .		
	Class 0-20 20-40 40-60 60-80 80-100 100-120 Total		
	Intervals		
	Frequency 5 f ₁ 10 f ₂ 7 8 50		

	SECTION E	
36	Case Study.1	
	The below pictures are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms	
	-6 -5 -4 -3 -2 -1 1 2 4 5 6 7 8 X	
	Observe the above graph and answer the following questions:	
	a) How many zeroes does the polynomial have?	1
	b) Write the zeroes of the given polynomial.	1
	c) (i) Write a quadratic polynomial representing the above graph.	2
	OR	
	c) (ii)If α and β are zeroes of the polynomial $x^2 - a(x+1) - b$ such that $(\alpha + 1) (\beta + 1) = 0$, find the value of b.	
37	Case Study.2	
	India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 8500 sets in 6th year and 9700 in 12th year.	

Based on the above information, answer the following questions:

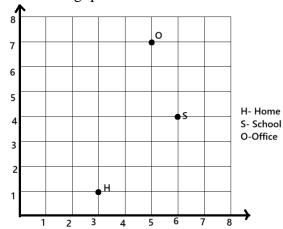
a) Find the production during first year.

b) Find the production during 8th year.

1

1

c) (i) Find the total production during first 10 years.


2

OR

c) (ii) In which year, the production is 10700.

38 Case Study.3

Mr. Mohan has to reach his office every day at 7:00 a.m. On the way, he drops his son at school. The locations of Mohan's house, his son's school, and his office are represented on the given coordinate map. Using the information provided, answer the following questions.

Based on the above information, answer the following questions:

a) Find the distance between Home and office.

1

b) Find the coordinate of the midpoint of the line Segment joining the pointsO and H.

1

c) (i) Find the coordinate of the point which divides the line segment joining the points H and S in the ratio 1:3.

2

OR

c) (ii) Find the point on the x-axis which is equidistant from the points H and S.